
458 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 3, MARCH 1997

[7] N. W. McLachlan,Theory and Application of Mathieu Functions.New
York: Dover, 1964.

[8] B. K. Wang, K. Y. Lam, M. S. Leong, and P. S. Kooi, “Elliptical
waveguide analysis using improved polynomial approximation,”Proc.
Inst. Elec. Eng.,vol. 141, pt. H, pp. 483–488, Dec. 1994.

Dispersion Characteristics of Open Microstrip
Lines Using Closed-Form Asymptotic Extraction

Seong-Ook Park and Constantine A. Balanis

Abstract—A full-wave spectral-domain method with an asymptotic
extraction technique is formulated for multilayer microstrip lines. This
formulation provides a simple closed-form representation of the asymp-
totic part of the impedance matrix by using Chebyshev polynomial basis
functions with the square-root edge condition and the asymptotic behavior
of the Green’s function. The formulation is applied to open microstrip
lines. Numerical results, in the form of the effective dielectric constants,
are presented for the dominant mode. It is shown that the proposed
method significantly reduces the computational time and improves the
accuracy over the conventional spectral-domain approach (SDA).

Index Terms—Accleration technique, microstrip lines, spectral-domain
approach.

I. INTRODUCTION

The spectral-domain approach (SDA) is the most popular technique
for calculating the dispersion characteristics of open microstrip lines
[1] because it is easy to formulate and is a rigorous full-wave
solution for simple and uniform planar structures. The SDA has been
extensively studied and refined to find well-suited basis functions that
have the ability to accurately represent and resemble the longitudinal
and transverse current densities (Jz and Jx) while minimizing the
computation time [2]–[5].

However, there are still slight discrepancies of the relative effective
permittivity between many numerical results obtained by various
methods [6]. These discrepancies are critically dependent on the
type of basis functions used and the truncation error due to the
finite upper limit (instead of infinity) for the numerical integration
in the evaluation of the impedance matrix elements. Although the
basis functions are carefully chosen to effectively represent the
expected current densities, lengthy computation time is required for
the numerical integration in the evaluation of the impedance matrix
elements to achieve the desired accuracy.

In this paper, as one possible technique for overcoming this, the
authors present a closed form for the asymptotic part of the spectral
impedance matrix to evaluate the relative effective permittivity in sin-
gle conductor, open microstrip lines. Using the asymptotic technique,
the asymptotic part of impedance matrix elements is recognized as
being integrable in closed form by introducing Chebyshev polynomial
basis functions with the square-root edge condition.
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Fig. 1. Geometry of a multilayer microstrip line structure.

To verify the accuracy and speed of the proposed method, com-
putations based on this method were compared with other available
results. There is good agreement between the proposed method and
other available methods. The proposed method significantly reduces
the central processing unit (CPU) time and increases the reliability
and accuracy.

II. CLOSED-FORM ASYMPTOTIC EXTRACTION

OF THE SPECTRAL-DOMAIN GREEN’S FUNCTION

The cross section of a general planar microstrip structure is shown
in Fig. 1. The strip conductor is assumed to be negligibly thin and the
line lossless. The substrate and superstrate materials are lossless and
isotropic. The open microstrip lines in [4] can be accurately modeled
by lettinghUM !1, considering only one substrate and superstrate
in Fig. 1. To calculate the effective dielectric constant (dispersion
characteristic), the proposed method in this paper is formulated to
include any number of substrate or superstrate structures. However,
to verify the authors’ method, an open microstrip line is used and the
results are compared with previously published data [3], [4], [6].

As an initial step to investigate the asymptotic closed-form ex-
traction for the impedance matrix elements, the authors extract the
asymptotic behavior of the Green’s function, with respect to�.
Assuming that� is sufficiently large, one can make the following
approximation:
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i are the wavenumbers in thêx, ẑ, andŷ directions,
respectively [1].

Since (2) is in error by about 0.5% forj�jhi = 3, coth (j�jhi) ' 1

is a good approximation forj�jhi > 3. Using the above approxima-
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where

sgn(�) =
1; if � > 0
�1; if � < 0:

It is interesting to note that from (4) to (6), only the adjacent layers
on either side of the center conductor affect the asymptotic Green’s
function. In order to increase the computation speed, a standard
asymptotic technique is applied to convert the slowly converging
impedance matrix elements used in the SDA into the sum of a
rapidly converging term and a slowly converging term (tail integral)
as follows:
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where the upper limit of the first integral has been chosen to be of
finite value�u. All other impedance matrix elementsZmn, Znm,
andZnn are treated in a similar manner.

Subtraction of the asymptotic terms from the Green’s functions
makes the integrands of the first integrals of (7) decay faster for
large � so the integrals can be truncated at an upper limit�u,
which can be numerically calculated. It is now recognized that by
using the asymptotic Green’s function and Chebyshev polynomial
basis functions with the square-root edge condition in [8], the second
integral of (7) can be represented by the following form:
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whereJm(�) is the Bessel function of the first kind. Similar forms
are used for the other tail integrals for~Jzm ~G1xz ~J

�

xn, ~Jxn ~G1zx ~J�zm,
and ~Jxn ~G1xx ~J�xn.

With the aid of the integration formula of [9, p. 404], the asymptotic
integral Imn of (8) can be written in closed form as

Imn =
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provided thatRe (m + n) > 0; w > 0.
The basis functions of the dominant mode in the spectral domain

are represented only by even-order Bessel functions. Considering this,
(8) and (9) can be simplified further as
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provided thatRe (m+ n) > 0, m, andn are even.
This closed form adds to the computational efficiency because

the integral is zero whenm 6= n. If the basis and weighting
functions are zero-order Bessel functions simultaneously (as for
matrix elementZ11), the closed-form solution of (9) cannot be used
because Re(m + n) = 0. In that case, the integral ofZ11 is split
into two parts as follows:
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The first integral of (11) can be solved numerically, as is done for the
first integral of (7). However, the second term of (11) is not available
in the literature. Therefore, other methods are advanced in this paper
to evaluate the second integral of (11).

The second integral of (11) can be presented in the following form
after replacingt = w�u=2:
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whereJ0(�) is the Bessel function of the first-kind order of 0.
The products of the two Bessel functionsJ0(t) � J0(t) can be

represented by an integral using the formula [9, formula (5.43.1)]

J0(t) � J0(t) =
2

�

�=2

0

J0(2 t cos �) d�: (13)

Substituting (13) in (12) and replacing� = 2 t cos �, the authors
obtain the following formula:
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Using the following formulas [10, pp. 45, 48]:
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the authors can write the integral of (12) as follows:
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With the aid of two formulas [11, formula (4.224.6)] and [11, formula
(3.621.3)], the integral of (12) can be finally expressed as follows:
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which converges uniformly for all real values.
The above series is very highly convergent if (w�u=2) < 3,

and only the first few terms (typically less than six) are necessary.
However, for (w�u=2) > 3, more terms are needed in the series
evaluation of (18).

III. N UMERICAL RESULTS

To check the validity of the authors’ improved computational
method the effective dielectric constants of an open microstrip line for
w=h = 1 (�r = 8; �r = 1) were calculated and tabulated in Table
I. Muller’s Method was used to find the root of the characteristic
equation representing the dominant mode. The authors compared the
results with those of [3], [4] using the conventional SDA and by
using variational conformal mapping in [6]. The agreement is good,
although there are slight discrepancies. To illustrate how the upper-
limit �u affects the effective dielectric constant, Table I also includes
the results for different upper limits�u. It is seen that the effective
dielectric constant rapidly approaches a constant value for�u > 30
(rad/mm).

The effective dielectric constant is insensitive to the upper-limit
�u, if �u > 30 (rad/mm). Thus, the authors confirm that this limiting
value of�re� can be regarded as an improved result. The numerical
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TABLE I
COMPARISON OF THEEFFECTIVE DIELECTRIC CONSTANT �

re� BETWEEN THE

PREVIOUS AND THE PRESENT METHOD PB (�r = 8; w=h = 1; �r = 1:0)

TABLE II
COMPUTER TIME ON A SUN SPARC STATION FOR THE CALCULATION OF THE

EFFECTIVE DIELECTRIC CONSTANT WITH TWO DIFFERENT TECHNIQUES

integration in the evaluation of the impedance matrix elements was
performed by using Gaussian quadrature. The interval of numerical
integration is subdivided into small intervals. Gaussian integration is
used over each subinterval. The authors found that the number of
basis functionsM = 5, N = 4 is sufficient to accurately represent
the surface current density in the entire range fromh=�0 = 0 to
h=�0 = 1.

Table II illustrates a comparison of the computation time between
the conventional SDA without asymptotic extraction technique and
the proposed method for the calculations of effective dielectric
constant forw=h = 1 and w=h = 0:1 (h=�0 = 0:1). For both
techniques, the quasi-TEM [12, p. 450] effective dielectric constant
was used as the initial value. Starting with this initial trial solution,
the results shown in Table II converge with an accuracy of 10�4,
after the seventh iteration forw=h = 1 and after the sixth iteration
for w=h = 0:1. The integration of the impedance matrix elements in
the conventional SDA requires truncation at a high value of the upper-
limit �u to provide sufficient accuracy, which results in a significantly
greater amount of computer time than the proposed method. As shown
in Table II, the improved method reduces the computational time by
26 times (forw=h = 1) and 49 times (forw=h = 0:1) than the
conventional SDA.

IV. CONCLUSION

In this paper, the authors have shown that a rigorous full-wave
spectral-domain approach using the closed-form asymptotic extrac-
tion technique (with choice of Chebyshev basis functions) results in
accurate results and significant savings in computation time over the
conventional SDA. By using the accurate numerical evaluation of
the finite integral and the closed-form asymptotic extraction formula,
the computational efficiency has been increased while the results
retain their accuracy. It should be emphasized that the closed-form
asymptotic formula obtained in this paper can also be applied to
multilayer microstrip lines and slotlines.
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Characteristics of Asymmetrical Coupled
Lines of a Conductor-Backed Coplanar Type

Kwok-Keung M. Cheng

Abstract—This paper presents for the first time a computer-aided
design-oriented (CAD) analytical formula for the determination of the
characteristic parameters of asymmetrical coupled lines of a conductor-
backed coplanar type. Closed-form expressions are developed for eval-
uating the self and mutual static capacitances based on a sequence of
conformal transformations. The derived formulas show excellent accu-
racy compared to the results produced by a spectral-domain approach.

Index Terms—Asymmetrical coupled lines, coplanar waveguide.

I. INTRODUCTION

Coupled transmission lines are used extensively in filters,
impedance matching networks, and directional couplers. The main
advantages of asymmetrical coupled lines [1] is that they offer added
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